Elderberry (Sambucus nigra spp.) juice contains a variety of polyphenols mostly anthocyanins. In order to understand the variation of polyphenol levels by genotype, various elderberry juice samples were analyzed for total phenolics (TP), total monomeric anthocyanins (TMA) and individual anthocyanin content (IAC). The Folin-Ciocalteu total phenolic method and pH differential method were used to measure the TP and TMA content, respectively. In addition, ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry was used to separate and detect individual anthocyanins from samples prepared by solid phase extraction. Multiple-reaction-monitoring was used to process data for the reduction of false positives, maximizing selectivity, and reliable quantification. The quantitative performance of the method was validated, and a detection limit of 0.3 ng/mL for cyanidin 3-O-glucoside was determined. This newly developed method may serve to characterize and profile various anthocyanins in elderberry juices for quality control, assessment of dietary intake, and anthocyanin-based biomedical studies. The effects of frozen storage on the anthocyanin and polyphenol content of elderberry fruit juice are investigated. Juice from three genotypes of American elderberry (Adams II, Bob Gordon, and Wyldewood) was screened for total phenolic and total monomeric anthocyanin content with spectrophotometric methods. The individual anthocyanin content of the juice was tested by coupling solid phase extraction with ultra-performance liquid chromatography/tandem mass spectrometry. Juice samples were tested initially upon harvest, then again after 3, 6, and 9 months of frozen storage. The three different genotypes of juice had significantly different TP, TMA, and IAC profiles initially (p
Handbook of LC-MS Bioanalysis

A constructive evaluation of the most significant developments in liquid chromatography–mass spectrometry (LC–MS) and its uses for quantitative bioanalysis and characterization for a diverse range of disciplines, Liquid Chromatography–Mass Spectrometry, Third Edition offers a well-rounded coverage of the latest technological developments and applications. As the technology itself has matured into a reliable analytical method over the last 15 years, the most exciting developments occur in LC–MS augments research into new applications. This edition places a stronger emphasis than previous editions on the impact of LC–MS methods, dedicating two-thirds of the text to small-molecule and biomolecular applications such as proteomics, pharmaceutical drug discovery and development, biochemistry, clinical analysis, environmental studies, and natural products research. Supported by the most relevant literature available, each chapter examines how the strategies, technologies, and recent advances—from sample pretreatment to data processing—in LC–MS helped to shape these disciplines. Featuring new chapters and extensive revisions throughout the book, Liquid Chromatography–Mass Spectrometry, Third Edition continues to provide scientists with a definitive guide and reference to the most important principles, strategies, and experimental precedents for applying LC–MS to their research.

Method Development and Validation for Drug Identification and Confirmation by LC/MS-MS for Limited-specimen Cases

High pressure, or high performance, liquid chromatography (HPLC) is the method of choice for checking purity of new drug candidates, monitoring changes during scale up or revision of synthetic procedures, evaluating new formulations, and running control/assurance of the final drug product. HPLC Method Development for Pharmaceuticals provides an extensive overview of modern HPLC method development that addresses these unique concerns. Includes a review and update of the current state of the art and science of HPLC, including theory, modes of HPLC, column chemistry, retention mechanisms, chiral separations, modern instrumentation (including ultrahigh-pressure systems), and sample preparation. Emphasis has been placed on implementation in a pharmaceutical setting and on providing a practical perspective. HPLC Method Development for Pharmaceuticals is intended to be particularly useful for both novice and experienced HPLC method development chemists in the pharmaceutical industry and for managers who are seeking to update their knowledge. Covers the requirements for HPLC in a pharmaceutical setting including strategies for software and hardware validation to allow for use in a regulated laboratory Provides an overview of the pharmaceutical development process (clinical phases, chemical and pharmaceutical development activities) Discusses how HPLC is used in each phase of pharmaceutical development and how methods are developed to support activities in each phase

Selection of the HPLC Method in Chemical Analysis

Hplc, Lc-Ms and Gc Method Development and Validation

This study aims to determine whether the analysis of dyed fiber through liquid chromatography (HPLC) with triple-quadrupole mass spectrometry (MS) can be used as a reliable alternative to the current chemical techniques used to differentiate dyes. Other methods of analysis involving HPLC and MS have proven to be capable of distinguishing chemically different dyes within a few dye classifications, but none have proven capable of providing a complete alternative to the current accepted technique of thin layer chromatography (TLC). In theory, HPLC-triple quad MS is capable of providing more reproducible and reliable data than the conventional TLC methods with a much greater depth of measurable information with which to characterize dye components. In this study, dyes will be extracted from various types of fibers, including commonly worn types like cotton, polyester, nylon, and wool, and examine dyes from most of the eight different dye classes.

The Influence of the Sample Matrix on LC-MS/MS Method Development and Analytical Performance

Thiamet-G inhibits the activity of N-acetyl--glucosaminidase, a glycoside hydrolase known as OGA. A validated bioanalytical method has been developed to enable pharmacokinetic studies of Thiamet-G and its related analogues. The bioanalysis was carried out using high performance liquid chromatography (HPLC) coupled to a tandem mass spectrometer (MS/MS). In
the MS/MS, multiple reaction monitoring (MRM) was used to monitor the transition of analyte parent ions to diagnostic daughter ions. The validated method utilized the Hypercarb SPE cartridge as the cleanup tool and the ZIC-HILIC column as the suitable stationary phase. The method was validated for linearity, specificity, accuracy, precision, recovery, matrix effect, stability, and sensitivity. Pharmacokinetic samples obtained from rats treated by oral gavage with Thiamet-G were subjected to analysis using the validated method. Thiamet-G was found to be absorbed with a C max of 370 ± 20 ng / mL and showed a t max of 2 h.

Liquid Chromatography - Mass Spectrometry

HPLC for Pharmaceutical Scientists

Driving under the influence of drugs (DUID) cases represent the largest portion of cases handled in most forensic toxicology laboratories. Blood is a commonly used specimen and is often analyzed using gas chromatography-mass spectrometry (GC/MS). A common extraction for this method requires two milliliters of blood. If more than one extraction is necessary, a larger volume of blood is required. Recently, laboratories have started using liquid chromatography-mass spectrometry (LC/MS) to obtain a lower limit of detection and extractions which require less blood to complete. Currently, the Oklahoma State Bureau of Investigation (OSBI) Laboratory operates LC-based extractions which require 250 to 500 microliters (µL) of sample to complete, but these are limited to specific drug classes. A general drug screen for forty drugs has been developed and validated using 250 microliters of blood. Even with this reduction of volume requirements, there are still instances in which less than one milliliter (mL) of blood is available for use by the analyst. An additional validation has been completed which required 100 microliters of sample to confirm the presence of thirty-nine drugs. A comparison between these methods was completed to verify the sensitivity of the 100 microliter method.

Selection of the HPLC Method in Chemical Analysis

This handbook is concerned with new chromatographic method development and validation using novel systematic approaches for pharmaceutical compounds. The first stage of the research was to study how method development and validation are typically carried out at present and to formulate this into a simple step-by-step approach. Such a template and protocol was not only used as the foundation of this research programme but could also serve as a simple systematic guide for other practitioners in the pharmaceutical industry. Furthermore, it was recognised that this protocol should satisfy the requirements of the major regulatory agencies. The second stage of this research involved evaluation and application of the above validation approach to new methods that were developed for a diverse range of analytes using HPLC, LC-MS and GC. In essence, the critical review of the requirements for method validation for various agencies and the subsequent preparation of single guidelines on how to go about method validation have had a significant impact on analytical practitioners worldwide.

Development of Liquid Chromatography-mass Spectrometric Assays and Sample Preparation Methods for the Biological Sample Analysis

AbstractBackground: Lipid peroxidation (LPO) is a prominent manifestation of oxidative stress in biological systems and the levels of LPO products in human blood are advocated to be useful markers of systemic oxidative stress. Linoleic acid peroxides are the predominant LPO products in human blood serum and the goal of this project is to transition an existing high performance liquid chromatography-photodiode array (HPLC-PDA) methodology to a liquid chromatography-mass spectrometry (LC-MS) platform. It is anticipated that an LC-MS method will provide greater sensitivity and specificity in comparison to HPLC-PDA. Methods: Flow injection analysis using pure standard compounds was used to identify the optimum ionization interface (APCI or ESI), mode (positive or negative) and preferred mobile phase solvent for MS detection. Resolution of standard compound mixtures in reversed phase chromatography was systematically optimized by proportioning the mobile phase composition of water and acetonitrile. A sample preparation methodology was developed to include a deuterated internal standard and the method performance characteristics including linearity, recovery (by standard additions methodology) and imprecision were evaluated. The ability of the method to respond to known oxidative stress was examined in human blood experimentally oxidized by Fenton reaction using copper ions. Results: ESI interface in negative ion mode produced abundant, predictable, M-1 molecular ions and was selected for MS detection. Acetonitrile containing 40% water at a flow rate of 0.3 mL/min, without acid
or based modifiers, achieved a compromise between optimal chromatographic resolution and optimal MS detection. The linear range of the LC-MS method was 0.056 to 1600 nM which was 15X more sensitive than HPLC-PDA. Sample extraction recovery ranged from 75-103% for authentic lipid analytes and 72-81% for deuterated internal standard compound d4-13-hydroxy-octadecadienoic acid. The imprecision of the assay was estimated to be 15-18% coefficient of variation. Copper ion Fenton reaction oxidation of human serum resulted in a 10-fold increase in the level of the target compound 9-hydroxy-octadecadienoic acid. Conclusion: LC-MS provides a more sensitive platform for measurement of total linoleic acid peroxidation products relative to HPLC-PDA. However, the mobile phase volatilization requirements of the MS detector limit the water content and flow rate of the LC system and thereby the chromatographic resolution. The limited chromatographic resolution results in equivocal MS peak integration and marginal analytical imprecision. Future method development should focus on increasing the chromatographic resolution of the reported methodology.

Practical HPLC and LC-MS Method Development and Validation

HPLC for Pharmaceutical Scientists is an excellent book for both novice and experienced pharmaceutical chemists who regularly use HPLC as an analytical tool to solve challenging problems in the pharmaceutical industry. It provides a unified approach to HPLC with an equal and balanced treatment of the theory and practice of HPLC in the pharmaceutical industry. In-depth discussion of retention processes, modern HPLC separation theory, properties of stationary phases and columns are well blended with the practical aspects of fast and effective method development and method validation. Practical and pragmatic approaches and actual examples of effective development of selective and rugged HPLC methods from a physico-chemical point of view are provided. This book elucidates the role of HPLC throughout the entire drug development process from drug candidate inception to marketed drug product and gives detailed specifics of HPLC application in each stage of drug development. The latest advancements and trends in hyphenated and specialized HPLC techniques (LC-MS, LC-NMR, Preparative HPLC, High temperature HPLC, high pressure liquid chromatography) are also discussed.

Sample Preparation in LC-MS Bioanalysis

First explaining the basic principles of liquid chromatography and mass spectrometry and then discussing the current applications and practical benefits of LC-MS, along with descriptions of the basic instrumentation, this title will prove to be the indispensable reference source for everyone wishing to use this increasingly important tandem technique. * First book to concentrate on principles of LC-MS * Explains principles of mass spectrometry and chromatography before moving on to LC-MS * Describes instrumental aspects of LC-MS * Discusses current applications of LC-MS and shows benefits of using this technique in practice

Method Development and Quantification of Telmisartan by LC-MS

In the development of anti-cancer drugs, it is essential to study the pharmacological profiles of the drugs. Among the analytical tools utilized in the pharmacological studies, LC-MS/MS has gained increased popularity due to its unequivocal sensitivity and specificity, as well as the ability of handling a wide variety of compounds with relatively simple sample preparation procedures. In this work, a brief review on the method rational, instrumentations, analytical method validation, and work flow of the method development was included. The processes of LC-MS/MS method development for the pharmacological studies of three anti-cancer drugs (i.e., methoxyamine, fludarabine, and 6-benzylthioinosine) were illustrated. To be more specific, a tetra-enzyme cocktail utilized for DNA adducts release was introduced. LC-MS/MS methods for the analysis of methoxyamine modified DNA abasic sites and fludarabine incorporated in DNA were developed toward the DNA adducts released from DNA with the enzyme cocktail. The methods were applied to the drug effect and drug mechanism studies. Another two LC-MS/MS method was developed for the quantification of 2-fluoroadenine released from the fludarabine incorporated DNA and free 6-benzylthioinosine drug molecule in mouse and human plasma. The first method helped to provide direct evidence to a newly proposed drug resistance mechanism toward fludarabine through DNA base excision repair; while the second method realized the pharmacokinetic studies of the drug. The results in this work not only demonstrated the capability of LC-MS/MS in solving sophisticated pharmacological puzzles, but will provide useful information guiding the preclinical studies and clinical therapy development of the anti-cancer drugs listed above.
Development of a Method for the LC/MS Determination of Vicinal Diketones in Beer

Development and Validation of a LC-MS/MS Method for the Pharmacokinetic Study of Thiamet-G and Its Analogues in Rat

The area of biosample analysis encompasses a very broad range of assays which support the clinical and nonclinical studies. Biosample analysis is used to provide a quantitative or qualitative measure of the active drug and/or its metabolite(s) in the biological matrix for the purpose of pharmacokinetics, toxicokinetics, bioequivalence, and exposure-response (pharmacokinetics/pharmacodynamics) studies. Due to the significance of pharmacological analysis, sensitive, reproducible and robust analytical methods are critically needed for pharmacological studies of the biosamples. A bioanalytical method mainly contains two components I) Sample preparation II) detection of the compound. Therefore, the main aims of this thesis are the development of quantitative and qualitative analytical methods for the target compounds using LC-MS/MS and development of accelerated sample preparation for high throughput sample analysis for DNA and proteins. In this dissertation, a brief review on the method rationale, workflow of the method development, sample preparation methods, instrumentations and analytical method validation, are discussed in Chapter 1. Also, research projects were discussed and the techniques used in the experiments for this thesis were reviewed. As so, chapter II and III were mainly focused on the accelerated sample preparation methods for the high throughput sample analysis of DNA and proteins respectively, where the sample preparation time was significantly reduced from hours to minutes, which are suitable for qualitative and quantitative analysis of DNA and proteins. In Chapter IV, a systematic study on the structural characterization of the model glycoprotein Human IgG was described. In chapter V successful development of LC-MS method was developed for the determination of Oxygen-18 isotope enrichment in the phosphate samples in the positional isotope exchange reactions to study the reversibility of certain enzymatic reactions was described. Successful development and validation of a new and sensitive analytical LC-MS/MS method for the determination and quantitation of incorporation rates of decitabine, an anti-cancer drug which can be applied to determine the sensitivity and responsiveness in patients treated with decitabine was described in Chapter VI.

HPLC Method Development for Pharmaceuticals

The porphyrins, chlorophylls, bilins and related tetrapyrroles are vital for all living organisms. Natural and synthetic tetrapyrroles are used extensively in foods, cosmetics, biotechnology, pharmaceuticals, diagnostics and medicine. Methods for their separation and characterization therefore, have a very wide area of applications. Yet, there is a dearth of books dedicated to HPLC and HPLC/MS of tetrapyrroles. Lim addresses this problem admirably by providing practical HPLC and HPLC/MS protocols coupled with in-depth chromatographic and mass spectrometric reference data. These are invaluable in the analysis, identification and characterization of porphyrins, chlorophylls, bilins and other related compounds found in biological and clinical materials. HPLC method development and optimization for coupling to mass spectrometry are also described in rich detail. Sample preparation and suggestions for avoiding procedural artifacts during extraction of clinical and biological samples are discussed. Clinical biochemists involved in biochemical diagnosis of human porphyrias will find this monograph assuredly helpful, as would analysts, biochemists and chemists involved in the separation, isolation and characterization of natural and synthetic tetrapyrroles. Undoubtedly, Lim has contributed a master-piece containing sufficient background material for beginners and up-to-date references for all researchers in the field. Contents: Structure, Distribution, Biosynthesis and FunctionHigh-Performance Liquid Chromatography of PorphyrinsMass Spectrometry of PorphyrinsPorphyrin Profiles in Blood, Urine and Faeces by HPLC and HPLC/ESI-MSIsolation and Characterization of Protoporphyrin Glycoconjugates from Harderian Glands of Rodents by HPLC and HPLC/ESI-MSHPLC and HPLC/MS of Chlorophyll and Related CompoundsHPLC and HPLC/MS of Bilins of Animal and Plant OriginFuture Directions of HPLC and Mass spectrometry of Tetrapyrroles Readership: Analytical biochemists, clinical biochemists, researchers in tetrapyrrole chemistry and biochemistry, plant scientists, pharmaceutical chemists. Keywords: Porphyrins; Chlorophylls; Bile Pigments; Bilins; High-Performance Liquid Chromatography of Porphyrins; Mass Spectrometry of Porphyrins; Tandem MS/MS of Tetrapyrroles
Read Online Lc Ms Method Development And Validation For The Estimation

Filling the gap for an expert text dealing exclusively with the practical aspects of HPLC-MS coupling, this concise, compact, and clear book provides detailed information to enable users to employ the method most efficiently. Following an overview of the current state of HPLC-MS and its instrumentation, the text goes on to discuss all relevant aspects of method development. A chapter on tips and tricks is followed by user reports on the advantages - and pitfalls - of applying the method in real-life scenarios. The whole is rounded off by a look at future developments by renowned manufacturers.

Applications of LC-MS in Toxicology

Liquid Chromatography-Mass Spectrometry, Third Edition

Selection of the HPLC Method in Chemical Analysis serves as a practical guide to users of high performance liquid chromatography, providing exacting criteria for method selection, development, and validation. High performance liquid chromatography is the most common analytical technique currently practiced in chemistry. However, the process of finding the appropriate information for a particular analytical project requires significant effort and pre-existent knowledge in the field. Further, sorting through the wealth of published data and literature takes both time and effort away from the critical aspects of HPLC method selection. This book, for the first time, presents a systematic approach for sorting through the available information, also providing a critical analysis of the progress in HPLC for selecting a specific analysis. It is an inclusive, go-to reference for HPLC method selection, development, and validation. Addresses the various aspects of practice and instrumentation needed to obtain reliable HPLC analysis results. Leads researchers to the best choice of an HPLC method from the overabundance of information existing in the field. Provides exacting criteria for HPLC method selection, development, and validation. Authored by world-renowned HPLC experts who have more than 60 years of combined experience in the field.

The HPLC-MS Handbook for Practitioners

Handbook of Analytical Quality by Design addresses the steps involved in analytical method development and validation in an effort to avoid quality crises in later stages. The AqBD approach significantly enhances method performance and robustness which are crucial during inter-laboratory studies and also affect the analytical lifecycle of the developed method. Sections cover sample preparation problems and the usefulness of the QbD concept involving Quality Risk Management (QRM), Design of Experiments (DoE) and Multivariate (MVT) Statistical Approaches to solve by optimizing the developed method, along with validation for different techniques like HPLC, UPLC, UFLC, LC-MS and electrophoresis. This will be an ideal resource for graduate students and professionals working in the pharmaceutical industry, analytical chemistry, regulatory agencies, and those in related academic fields. Concise language for easy understanding of the novel and holistic concept Covers key aspects of analytical development and validation Provides a robust, flexible, operable range for an analytical method with greater excellence and regulatory compliance.

High-Performance Liquid Chromatography and Mass Spectrometry of Porphyrins, Chlorophylls and Bilins

Antidepressants are one of the most commonly prescribed drugs in America, with researchers reporting one in six Americans take some form of psychiatric drugs-mostly antidepressants (NBC News, 2016). Antidepressants are often present in combination with other drugs in suicides and drug-related deaths, so a sensitive and specific method to detect and quantify antidepressants is necessary. We developed a method for the detection and quantification of 18 different antidepressants in whole blood, with a range of 2.5-900 ng/mL and LOQ of 2.5 ng/mL. Three hundred uL of blood was used and the analytes were extracted using solid-phase extraction and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), monitoring two transitions per analyte. The method was validated and applied to 10 positive authentic samples, and blind proficiency testing was additionally performed to test the method’s ability to successfully quantify the analytes.

Analytical toxicologists are involved in the analysis of drugs and poisons in biological samples in different environments: therapeutic drug monitoring, drugs in sport, postmortem examinations, etc. Following the developments of LC-MS in the last decade and its establishment as the method of choice in the pharmaceutical industry (analytical R&D), the technique has gained favour in other scientific disciplines including analytical toxicology. This is notably due to the fact that purchase and operative costs of the equipment have gradually decreased over the same period. Many scientists in the field of analytical toxicology have already adopted LC-MS in their daily work, and this is illustrated by the increasing numbers of research papers published and presented at relevant conferences (The International Association of Forensic Toxicologists, Society of Forensic Toxicologists).

Method Development on the Analysis of Pesticides in Vegetables Using Liquid Chromatography-mass Spectrometry (LC-MS)

Clinical pharmacology plays an important role in today’s medicine. Due to the high sensitivity, selectivity, and affordability of a mass spectrometer (MS), the high performance liquid chromatography – mass spectrometry (LC-MS) analytical technique is widely used in the determination of drugs in human biological matrices for clinical pharmacology. Specifically, LC-MS is used to analyze: anticancer drugs antimicrobial drugs antidepressant drugs antiepileptic drugs antifungal drug antimicrobial drugs antipsychotic drugs antiretroviral drugs anxiolytic/hypnotic drugs cardiac drugs drugs for addiction immunosuppressant drugs mood stabilizer drugs This book will primarily cover the various methods of validation for LC-MS techniques and applications used in modern clinical pharmacology.

Practical HPLC Method Development

Designed for the professional chemist who is already familiar with the basics of high performance liquid chromatography, this book explains how to develop separation methods for a variety of situations. It focuses on reversed-phase separations of small molecules and development of separations.

Development and Validation of a LC-MS/MS Method for Detection and Quantification of 18 Antidepressants in Whole Blood

Development of the Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Method for Determination of Chloroquine (CQ) and Desethylchloroquine (DCQ) in Human Plasma

A concise yet comprehensive reference guide on HPLC/UHPLC that focuses on its fundamentals, latest developments, and best practices in the pharmaceutical and biotechnology industries. Written for practitioners by an expert practitioner, this new edition of HPLC and UHPLC for Practicing Scientists adds numerous updates to its coverage of high-performance liquid chromatography, including comprehensive information on UHPLC (ultra-high-pressure liquid chromatography) and the continuing migration of HPLC to UHPLC, the modern standard platform. In addition to introducing readers to HPLC’s fundamentals, applications, and developments, the book describes basic theory and terminology for the novice, and reviews relevant concepts, best practices, and modern trends for the experienced practitioner. HPLC and UHPLC for Practicing Scientists, Second Edition offers three new chapters. One is a standalone chapter on UHPLC, covering concepts, benefits, practices, and potential issues. Another examines liquid chromatography/mass spectrometry (LC/MS). The third reviews at the analysis of recombinant biologics, particularly monoclonal antibodies (mAbs), used as therapeutics. While all chapters are revised in the new edition, five chapters are essentially rewritten (HPLC columns, instrumentation, pharmaceutical analysis, method development, and regulatory aspects). The book also includes problem and answer sections at the end of each chapter. Overviews fundamentals of HPLC to UHPLC, including theories, columns, and instruments with an abundance of tables, figures, and key references. Features brand new chapters on UHPLC, LC/MS, and analysis of recombinant biologics. Presents updated information on the best practices in method development, validation, operation, troubleshooting, and maintaining regulatory compliance for both HPLC and UHPLC. Contains major revisions to all chapters of the first edition and substantial rewrites of chapters on HPLC columns, instrumentation, pharmaceutical analysis, method development, and regulatory aspects. Includes end-of-chapter quizzes as assessment and learning aids. Offers a
reference guide to graduate students and practicing scientists in pharmaceutical, biotechnology, and other industries. Filled with intuitive explanations, case studies, and clear figures, HPLC and UHPLC for Practicing Scientists, Second Edition is an essential resource for practitioners of all levels who need to understand and utilize this versatile analytical technology. It will be a great benefit to every busy laboratory analyst and researcher.

Essentials in Modern HPLC Separations

A comprehensive yet concise guide to Modern HPLC. Written for practitioners by a practitioner, Modern HPLC for Practicing Scientists is a concise text which presents the most important High-Performance Liquid Chromatography (HPLC) fundamentals, applications, and developments. It describes basic theory and terminology for the novice, and reviews relevant concepts, best practices, and modern trends for the experienced practitioner. Moreover, the book serves well as an updated reference guide for busy laboratory analysts and researchers. Topics covered include: HPLC operation, Method development, Maintenance and troubleshooting, Modern trends in HPLC such as quick-turnaround and "greener" methods. Regulatory aspects. While broad in scope, this book focuses particularly on reversed-phase HPLC, the most common separation mode, and on applications for the pharmaceutical industry, the largest user segment. Accessible to both novice and intermediate HPLC users, information is delivered in a straightforward manner illustrated with an abundance of diagrams, chromatograms, tables, and case studies, and supported with selected key references and Web resources. With intuitive explanations and clear figures, Modern HPLC for Practicing Scientists is an essential resource for practitioners of all levels who need to understand and utilize this versatile analytical technology.

Handbook of Analytical Quality by Design

Analytical methods development and validation play important roles in the discovery, development, and manufacture of pharmaceuticals. The current good manufacturing practice (cGMP) and Food Drug Administration (FDA) Guidelines insist for adoption of sound methods of analysis with greater sensitivity and reproducibility. This thesis describes analytical methods developed for drug determination in pharmaceutical dosage forms and biological matrices including Chromatography (RP-HPLC) and Hyphenated Techniques (LC-MS/MS). Methods have been developed for separation and quantification of selected drugs from categories like Antihypertensive, Antihyperlipidemic, Skeletal Muscle Relaxant, Non-Steroidal Anti-inflammatory Drug (NSAID), Antibiotic, Anticonvulsant, Antiviral, and Analectic.

Development and Validation of LC-MS/MS Method for the Determination of Ochratoxin A and Its Metabolite Ochratoxin Α in Poultry Tissues and Eggs

Consolidates the information LC-MS bioanalytical scientists need to analyze small molecules and macromolecules. The field of bioanalysis has advanced rapidly, propelled by new approaches for developing bioanalytical methods, new liquid chromatographic (LC) techniques, and new mass spectrometric (MS) instruments. Moreover, there are a host of guidelines and regulations designed to ensure the quality of bioanalytical results. Presenting the best practices, experimental protocols, and the latest understanding of regulations, this book offers a comprehensive review of LC-MS bioanalysis of small molecules and macromolecules. It not only addresses the needs of bioanalytical scientists working on routine projects, but also explores advanced and emerging technologies such as high-resolution mass spectrometry and dried blood spot microsampling. Handbook of LC-MS Bioanalysis features contributions from an international team of leading bioanalytical scientists. Their contributions reflect a review of the latest findings, practices, and regulations as well as their own first-hand analytical laboratory experience. The book thoroughly examines: Fundamentals of LC-MS bioanalysis in drug discovery, drug development, and therapeutic drug monitoring. The current understanding of regulations governing LC-MS bioanalysis. Best practices and detailed technical instructions for LC-MS bioanalysis method development, validation, and stability assessment of analyte(s) of interest. Experimental guidelines and protocols for quantitative LC-MS bioanalysis of challenging molecules, including prodrugs, acylglucuronides, N-oxides, reactive compounds, and photosensitive and autooxidative compounds. With its focus on current bioanalytical practice, Handbook of LC-MS Bioanalysis enables bioanalytical scientists to develop and validate robust LC-MS assay methods, all in compliance with current regulations and standards.
Development of Quantitative LC-MS/MS Methods for the Pharmacological Studies of Anti-cancer Drugs

This book discusses in a systematic manner the role of separation in HPLC, the types and characteristics of stationary phases and of mobile phases used in this technique, as well as other factors influencing the separation. The selection process of stationary and mobile phase for a specific separation is described as related to the physico-chemical characteristics of the molecules to be separated and of their matrix. All these subjects are discussed from the point of view of the new developments in HPLC. The book also includes a part presenting the practice of modern HPLC as necessary for applications, particularly related to the analysis of pharmaceutical and biological samples, food and beverages, environmental samples, etc. Gives a clear presentation of notions and concepts Discusses key parameters in HPLC separation Includes modern developments in HPLC Describes interrelation between various HPLC features (solvent pressure, separation, detection) Includes a large number of references.

Analytical Method Development by Liquid Chromatography

The coherent body of research described in published work is concerned with new assay method development and validation using novel systematic approaches for pharmaceutical and diagnostic compounds. The first stage of the research was to study how analytical method development and validation are typically carried out at present and to formulate this into a simple step-by-step approach. Such a template and protocol was not only used as the foundation of this research programme but could also serve as a simple systematic guide for other practitioners and those new to the field. Furthermore, it was recognised that this protocol should satisfy the requirements of the most strategically important regulatory agencies. The second stage of this research involved evaluation and application of the above validation approach to new methods that were developed for a diverse range of analytes using HPLC, LC-MS and GC. In essence, the critical review of the requirements for method validation for various agencies and the subsequent preparation of guidelines on how to go about method validation have had a significant impact on analytical practitioners worldwide.

Amino Acid Analysis in Biofluids Using LC-MS-MS

Revised and Expanded Handbook Provides Comprehensive Introduction and Complete Instruction for Sample Preparation in Vital Category of Bioanalysis Following in the footsteps of the previously published Handbook of LC-MS Bioanalysis, this book is a thorough and timely guide to all important sample preparation techniques used for quantitative Liquid Chromatography-Mass Spectrometry (LC-MS) bioanalysis of small and large molecules. LC-MS bioanalysis is a key element of pharmaceutical research and development, post-approval therapeutic drug monitoring, and many other studies used in human healthcare. While advances are continually being made in key aspects of LC-MS bioanalysis such as sensitivity and throughput, the value of research/study mentioned above is still heavily dependent on the availability of high-quality data, for which sample preparation plays the critical role. Thus, this text provides researchers in industry, academia, and regulatory agencies with detailed sample preparation techniques and step-by-step protocols on proper extraction of various analyte(s) of interest from biological samples for LC-MS quantification, in accordance with current health authority regulations and industry best practices. The three sections of the book with a total of 26 chapters cover topics that include: Current basic sample preparation techniques (e.g., protein precipitation, liquid-liquid extraction, solid-phase extraction, salting-out assisted liquid-liquid extraction, ultracentrifugation and ultrafiltration, microsampling, sample extraction via electromembranes) Sample preparation techniques for uncommon biological matrices (e.g., tissues, hair, skin, nails, bones, mononuclear cells, cerebrospinal fluid, aqueous humor) Crucial aspects of LC-MS bioanalytical method development (e.g., pre-analytical considerations, derivation strategies, stability, non-specific binding) in addition to sample preparation techniques for challenging molecules (e.g., lipids, peptides, proteins, oligonucleotides, antibody-drug conjugates) Sample Preparation in LC-MS Bioanalysis will prove a practical and highly valuable addition to the reference shelves of scientists and related professionals in a variety of fields, including pharmaceutical and biomedical research, mass spectrometry, and analytical chemistry, as well as practitioners in clinical pharmacology, toxicology, and therapeutic drug monitoring.

Method Development for the Analysis of Bioactive Lipids by Liquid Chromatography (LC) and Mass Spectrometry (MS)
Chromatography Tandem Mass Spectrometry (LC-MS-MS)

Selection of the HPLC Method in Chemical Analysis serves as a practical guide to users of high-performance liquid chromatography and provides criteria for method selection, development, and validation. High-performance liquid chromatography (HPLC) is the most common analytical technique currently practiced in chemistry. However, the process of finding the appropriate information for a particular analytical project requires significant effort and pre-existent knowledge in the field. Further, sorting through the wealth of published data and literature takes both time and effort away from the critical aspects of HPLC method selection. For the first time, a systematic approach for sorting through the available information and reviewing critically the up-to-date progress in HPLC for selecting a specific analysis is available in a single book. Selection of the HPLC Method in Chemical Analysis is an inclusive go-to reference for HPLC method selection, development, and validation. Addresses the various aspects of practice and instrumentation needed to obtain reliable HPLC analysis results Leads researchers to the best choice of an HPLC method from the overabundance of information existent in the field Provides criteria for HPLC method selection, development, and validation Authored by world-renowned HPLC experts who have more than 60 years of combined experience in the field

Liquid Chromatography - Mass Spectrometry

"No existent analytical method allowed the determination of the vicinal diketones (VDK), 2,3-butanedione (diacetyl) and 2,3-pentanedione, by liquid chromatography/mass spectrometry (LC/MS). An LC/MS method was developed for the simultaneous determination of diacetyl and 2,3-pentanedione in beer. A method allowing the determination of the amino acids (AA) related to the formation of VDK during fermentation was also developed. VDK were derivatized with o-phenylenediamine (OPDA) to form quinoxaline compounds. The reaction of VDK with OPDA was studied to optimize reaction time. Conversion of the diacetyl precursor, alpha-acetolactate, was tested using multiple oxidative decarboxylation techniques. Attempts were also made to determine simultaneously the AA, leucine, isoleucine and valine with the VDK. Simultaneous determination was unsuitable for the AA levels found in beer fermentation and separate methods for the determination of AA were developed. Total VDK were measured over a concentration range of 10 µg/L to 10 mg/L with less than 10% variation. These analytical methods were tested using a laboratory scale experiment to assess the impact of fermentation temperature on total VDK production and AA absorption. Samples collected in a local brewery were analyzed for total VDK using the developed method." --

Modern HPLC for Practicing Scientists

The coherent body of research described in this book is concerned with new HPLC method development and validation using novel systematic approaches for pharmaceutical and diagnostic compounds. The first stage of the research was to study how analytical method development and validation are typically carried out at present and to formulate this into a simple step-by-step approach. Such a template and protocol was not only used as the foundation of this research programme but could also serve as a simple systematic guide for other practitioners and those new to the field. Furthermore, it was recognised that this protocol should satisfy the requirements of the most strategically important regulatory agencies. The second stage of this research involved evaluation and application of the validation approach to new methods that were developed for a diverse range of analytes using HPLC and LC-MS. In essence, the critical review of the requirements for method validation for various agencies and the subsequent preparation of guidelines on how to go about method validation have had a significant impact on analytical practitioners worldwide.

LC-MS/MS Method Development and Validation for Simultaneous Quantification of First-line HIV Drugs and Second-line TB Drugs in Rat Plasma

LC-MS/MS Method Development for Quantification of Bioactive Compounds in Elderberry and Garlic Botanicals

HPLC and UHPLC for Practicing Scientists
Forced degradation studies are used to facilitate the development of analytical methodology, to gain a better understanding of active pharmaceutical ingredient (API) and drug product (DP) stability and to provide information about degradation pathways and degradation products. The impurity profiling of the pharmaceuticals is of increasing importance as drug safety receives more and more attention from the public and from the media. LC PDA method enables simple, accurate, reproducible and fast quantitative analysis of telmisartan in presence of degradation products. The method has been successfully applied to stability study. For quantification the training has helped in learning to develop a new, rapid, sensitive and precise MRM LC-ESI-MS-MS method for the simultaneous separation and quantification pharmaceutical drug telmisartan and its marketed formulation. The HPTLC method is sensitive, precise and accurate and can be used for the routine quality control analysis of telmisartan in its tablet dosage forms.

Development and Validation of a Triple Quad LC/MS Method for Fiber Dye Analysis

First explaining the basic principles of liquid chromatography and mass spectrometry and then discussing the current applications and practical benefits of LC-MS, along with descriptions of the basic instrumentation, this title will prove to be the indispensable reference source for everyone wishing to use this increasingly important tandem technique. * First book to concentrate on principles of LC-MS * Explains principles of mass spectrometry and chromatography before moving on to LC-MS * Describes instrumental aspects of LC-MS * Discusses current applications of LC-MS and shows benefits of using this technique in practice

Copyright code: 91394806a06d20c9abad9ec650b2cf06